Misalkanjarak ke H ke DF adalah x. Kita dapat mencari jarak H ke DF dengan menggunakan kesamaan luas segitiga L_ {HDF}=L_ {HDF} LHDF = LHDF \frac {1} {2}\cdot HD\cdot HF=\frac {1} {2}\cdot DF\cdot x 21 â‹…HDâ‹…H F = 21 â‹…DF â‹…x 6\cdot 6\sqrt {2}=6\sqrt {3}\cdot x 6â‹…6 2 = 6 3â‹…x \frac {6\sqrt {2}} {\sqrt {3}}=x 36 2 = x
Jaraktitik h ke garis df alternatif penyelesaian gambar . Jarak titik f ke garis ac b. Jarak titik h ke garis df adalah cm. Of = oh = a . Diketahui kubus panjang ab = 10 cm. Play this game to review mathematics. Gh merupakan rusuk kubus yang panjangnya 12 cm. Jarak titik h ke garis df. Jarak titik h ke garis df!
Diagonalruang = panjang rusuk Diagonal sisi = panjang rusuk Dari soal diperoleh ilustrasi gambarnya adalah Jarak titik H ke garis AC adalah adalah HO dengan O adalah pertengahan AC. DH = 6 cm Garis BD dan AC berpotongan tegak lurus dan sama besar di titik O, sehingga: Jadi, jarak titik H ke garis AC adalah Mau dijawab kurang dari 3 menit?
Diketahuigaris 2x + 4y - 3 = 0 didilatasikan dengan skala -2 terhadap titik pusat 2 -4 tentukan bayangan garis? . bagaimana saran anda terhadap bank yang sakit tersebut?. 3. Suhardi ingin membeli 8 lembar sertifikat deposito nominal.
Pembahasan Jarak Titik H Ke Garis Df Ingat! Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Panjang diagonal ruang kubus yang memiliki rusuk adalah . Panjang diagonal bidang kubus yang memiliki rusuk adalah . Jika dalam suatu segitiga terdapat 2 garis yang dapat dijadikan tinggi ( dan
Pelajaran Soal & Rumus Geometri Jarak Titik ke Garis. Kalau kamu ingin belajar geometri jarak titik ke garis secara lebih mendalam, coba simak penjelasan yang ada di sini. Setelah menerima materi, kamu bisa langsung mempraktikkannya dengan mengerjakan latihan soal yang telah kami sediakan. Di sini, kamu akan belajar tentang Geometri Jarak
. – Kubus merupakan bangun tiga dimensi yang memiliki 6 buah sisi, 12 rusuk, dan 8 sudut yang kongruen. Pada materi kali ini kita akan mempelajari bagaimana cara menyelesaikan soal menghitung panjang rusuk dan besar sudut pada kubus. Contoh soal perhitungan panjang dan sudut kubus Contoh soal 1 menghitung jarak antar titik dalam kubus Diketahui kubus dengan panjang rusuk 8 cm. Jarak titik H ke garis AC adalah … NURUL UTAMI Garis yang menunjukkan jarak H ke AC pada kubus Untuk memudahkan perhitungan, kita dapat mengeleluarkan segitiga ACH sebaga berikut NURUL UTAMI Segitiga sama kaki ACH Dalam gambar terlihat bahwa AH, AC, dan HC merupakan diagonal sisi dari kubus. Artinya, ketiga garis tersebut memiliki panjang yang sama. Melansir dari Splash Learn, panjang diagonal sisi suatu kubus adalah √2 panjang AH = AC = HC = panjang rusuk x √2 = 8√2. Jarak titik H ke garis AC disimbolkan dengan garis Ho yang membentuk sudut siku-siku. Adapun, panjang Ao = oC = ½ AC = ½ 8√2 = 4√2. Baca juga Unsur-Unsur Kubus dan Balok Sehingga, panjang Ho dapat dihitung dengan rumus pitagoras sebagai berikutHo = √AH² - Ho² = √8√2² – 4√2² = √64 x 2 – 16 x 2 = √128 – 32 = √96 = √16 x 6 = 4√6Maka, jarak titik H ke garis AC pada kubus adalah 4√6 cm. Contoh soal 2 menghitung perbandingan geometri sudut kubus Besar sudut antara ruas garis AG dan bidang EFGH pada kubus adalah a. Nilai cos a adalah … Jawaban
Dimensi tiga tidak hanya berkaitan dengan kedudukan titik, garis, dan bidang saja, akan tetapi juga berkaitan dengan jarak titik, garis dan bidang. Penggunaan jarak titik, garis dan bidang dalam dimensi tiga akan lebih sering dikaitkan dengan bangun ruang, baik itu balok, kubus, maupun limas. Sebelum membahas lebih lanjut mengenai jarak, terlebih dahulu kita harus mengenal tentang antara sebuah titik dan sebuah garis adalah panjang ruas garis yang tegaklurus dari titik ke garis tersebut. Ilustrasi mengenai jarak titik ke garis dapat digambarkan kembali seperti berikutDi antara titik dan garis di atas dapat ditarik garis-garis yang akan digunakan untuk menentukan jarak antara titik dan garis. Misalkan ditarik 4 garis dari titik A ke garis k seperti pada gambar di atas, yaitu garis 1 – 4. Dari keempat garis tersebut, hanya ada satu garis yang berkedudukan tegak lurus terhadap garis k. Garis inilah yang merupakan garis terpendek di antara garis yang lain. Garis terpendek itulah yang merepresentasikan jarak antara titik A dan garis k pada ilustrasi di bagaimanakah menentukan jarak antara titik dan garis dalam bangun ruang?Contoh SoalMisalkan pada kubus ABCD. EFGH diketahui memiliki panjang rusuk 6 cm. Terdapat titik P tepat di tengah bidang ABCD. Tentukan jarak titik P ke ruas garis HG!JawabUntuk menentukan jarak titik P ke ruas garis HG maka ilustrasikan semua informasi yang diperoleh dari titik P pada ruas garis HG adalah titik Q, maka ruas garis PQ tegak lurus dengan ruas garis HG. Untuk mempermudah penentuan panjang PQ, proyeksikan titik Q pada ruas garis CD dan misalkan dengan titik R, sehingga terbentuk ΔPQR. Q adalah titik tengah ruas garis HG, dan R adalah titik tengah ruas garis CDJarak titik P ke ruas garis HG dapat diperoleh dengan menentukan panjang ruas garis PQ.
Kelas 12 SMADimensi TigaJarak Titik ke GarisPada kubus ABCD EFGH yang panjang rusuknya 6 cm, jarak titik H ke DF adalah . . . .Jarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0157Diketahui kubus dengan panjang rusuk 10 cm. Tit...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...Teks videoUntuk mengerjakan soal ini kita lihat kubus abcdefgh dengan rusuk nya 6 kemudian kita diminta mencari jarak dari titik h ke DF jadi kita buat segitiga deh kita mencari jahat hahaha kan jadi segitiga DHF jadi seperti ini ya. Jadi itu adalah diagonal bidang jadi 6 akar 2 d adalah kutub jadi 6 DM adalah diagonal jadi 6 akar 3 untuk mencari hahaha keren kita gunakan aturan luas segitiga jadi luas itu adalah setengah kali 6 kali 6 akar 2 = setengah X hahaha kan kali yaitu 6 akar 3 sehingga Tengah dan 6 yang bisa kita menjadi hahaha kan adalah 6 √ 2 dibagi √ 3 * akar 3 per akar 3 setara sional kan √ 3 * √ 3 menjadi 3 dengan 6 jadi 2 ini didapatkan jawabannya adalah 2 √ 6 cm dan ini adalah Opi D sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
PembahasanIngat! Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Panjang diagonal ruangkubus yang memiliki rusuk adalah . Panjang diagonal bidang kubus yang memiliki rusuk adalah . Jika dalam suatu segitiga terdapat 2 garis yang dapat dijadikan tinggi dan dan 2 garis yang dapat dijadikan alas dan , maka berlaku . HF adalah diagonal bidang, sehingga . DF adalah diagonal ruang, sehingga . Perhatikan segitiga DFH memiliki 2 garis tinggi dan 2 garis alas, sehingga berlaku rumus kesamaan luas segitiga, maka Jadi, jarak titik H ke garis DF adalah .Ingat! HF adalah diagonal bidang, sehingga . DF adalah diagonal ruang, sehingga . Perhatikan segitiga DFH memiliki 2 garis tinggi dan 2 garis alas, sehingga berlaku rumus kesamaan luas segitiga, maka Jadi, jarak titik H ke garis DF adalah .
A. Definisi Jarak Titik ke Garis Jarak titik A ke garis g adalah ruas garis terpendek yang menghubungkan titik A ke garis g. Ruas garis terpendek tersebut diperoleh dengan menarik garis dari titik A tegak lurus terhadap garis g. Perhatikan gambar berikut B. Contoh Soal dan Pembahasan Contoh 1. Latihan Matematika Wajib Kelas 12 Diketahui limas beraturan panjang rusuk AB = 3 cm dan TA = 6 cm. Tentukan jarak titik B dan rusuk TD. Pembahasan Lukis garis dari titik B yang tegak lurus dengan DT perhatikan gambar. Dari gambar diperoleh bahwa jarak titik B ke garis DT adalah panjang ruas garis BE. Untuk itu perhatikan segitiga BDT. Kemudian lukis garis tinggi dari titik T ke garis BD seperti gambar di atas. TB = TD = 6 cm, maka garis tinggi TO membagi dua sama panjang garis BD OB = OD. $\begin{align} BD &=\sqrt{AB^2+AD^2} \\ &=\sqrt{3^2+3^2} \\ BD &=3\sqrt{2} \end{align}$ $OB=\frac{1}{2}BD=\frac{3}{2}\sqrt{2}$ Perhatikan segitiga TOB $\begin{align} OT &=\sqrt{TB^2-OB^2} \\ & =\sqrt{6^2-\left \frac{3}{2}\sqrt{2} \right^2} \\ & =\sqrt{36-\frac{9}{2}} \\ & =\sqrt{\frac{63}{2}} \\ OT &=\frac{3\sqrt{7}}{\sqrt{2}} \end{align}$ Dengan menggunakan luas segitiga TDB maka $\begin{align} \frac{1}{2}. &=\frac{1}{2}. \\ &= \\ &= 3\sqrt{2}.\frac{3\sqrt{7}}{\sqrt{2}} \\ BE &= \frac{9\sqrt{7}}{6} \\ BE &= \frac{3\sqrt{7}}{2} \end{align}$ Jadi, jarak titik B ke garis DT adalah $\frac{3\sqrt{7}}{2}$. Contoh 2. Latihan Matematika Wajib Kelas 12 Diketahui limas segi enam beraturan dengan panjang rusuk AB = 10 cm dan AT = 13 cm. Tentukan jarak antara titik B dan rusuk TE. Pembahasan Perhatikan gambar berikut! Jarak titik B ke garis TE adalah panjang ruas garis BP. Perhatikan segitiga TBE Karena ABCDEF adalah segi-6 beraturan, maka BE = 20 cm. $OB=\frac{1}{2}BE=10$ TB = TE = AT = 13 Perhatikan segitiga BOT $\begin{align} OT &=\sqrt{TB^2-OB^2} \\ &=\sqrt{{13}^2-{10}^2} \\ OT &=\sqrt{69} \end{align}$ Dengan menggunakan luas segitiga TBE, maka $\begin{align} \frac{1}{2}. &=\frac{1}{2}. \\ &= \sqrt{69}\times 20 \\ BP &= \frac{20}{13}\sqrt{69} \end{align}$ Jadi, jarak titik B ke garis TE adalah $\frac{20}{13}\sqrt{69}$. Contoh 3. Latihan Matematika Wajib Kelas 12 Diketahui kubus dengan rusuk AB = 10 cm. Tentukan a. jarak titik F ke garis AC. b. jarak titik H ke garis DF. Pembahasan a. jarak titik F ke garis AC Perhatikan gambar di atas, jarak titik T ke garis AC adalah panjang garis OF. Perhatikan segitiga AOF $AF=10\sqrt{2}$ $\begin{align} OA &=\frac{1}{2}AC \\ & =\frac{1}{2}.10\sqrt{2} \\ OA &= 5\sqrt{2} \end{align}$ $\begin{align} OF &= \sqrt{AF^2-OA^2} \\ &=\sqrt{10\sqrt{2}^2-5\sqrt{2}^2} \\ &=\sqrt{200-50} \\ &=\sqrt{150} \\ &=\sqrt{25\times 6} \\ OF &=5\sqrt{6} \end{align}$ b. jarak titik H ke garis DF perhatikan gambar berikut! Jarak titik H ke garis DF adalah panjang garis PH. Perhatikan segitiga DHF Menggunakan luas DHF, maka $\begin{align} \frac{1}{2}. &=\frac{1}{2}. \\ 10\sqrt{3}.PH &=10\sqrt{2}.10 \\ PH &=\frac{10\sqrt{2}}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ PH &=\frac{10}{3}\sqrt{6} \end{align}$ Jadi, jarak titik H ke garis DF adalah $\frac{10}{3}\sqrt{6}$. Contoh 4. Latihan Matematika Wajib Kelas 12 Diketahui kubus dengan rusuk 8 cm. Titik M adalah titik tengah BC. Tentukan jarak M ke EG. Pembahasan Jarak titik M ke garis EG adalah panjang garis MN. Perhatikan segitiga EBM siku-siku di B $\begin{align} EM &=\sqrt{BE^2+BM^2} \\ & =\sqrt{8\sqrt{2}^2+4^2} \\ & =\sqrt{128+16} \\ EM &=12 \end{align}$ Perhatikan segitiga MCG siku-siku di C $\begin{align} MG &=\sqrt{CM^2+CG^2} \\ &=\sqrt{4^2+8^2} \\ &=\sqrt{80} \\ MG &= 4\sqrt{5} \end{align}$ Lihat segitiga EGM, berlaku aturan cosinus $\begin{align} \cos \angle EGM &= \frac{EG^2+MG^2-EM^2}{ \\ &=\frac{{{8\sqrt{2}}^{2}}+4\sqrt{5}-{{12}^{2}}}{ \\ &=\frac{128+80-144}{64\sqrt{10}} \\ \cos \angle EGM &=\frac{1}{\sqrt{10}} \\ \sin \angle EGM &=\frac{\sqrt{\sqrt{10}^2-1}}{\sqrt{10}} \\ \sin \angle EGM &=\frac{3}{\sqrt{10}} \end{align}$ Dengan menggunakan luas segitiga EGM, maka $\begin{align} \frac{1}{2}. &= \frac{1}{2}. \angle EGM \\ MN &= MG.\sin \angle EGM \\ &= 4\sqrt{5}.\frac{3}{\sqrt{10}} \\ &=\frac{12}{\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}} \\ MN &= 6\sqrt{2} \end{align}$ Jadi, jarak titik M ke garis EG adalah $6\sqrt{2}$. Contoh 5. Latihan Matematika Wajib Kelas 12 Perhatikan limas segi empat beraturan berikut. Titik P dan Q berturut-turut adalah titik tengah rusuk AB dan AD. Jika panjang AB = TA = 12 cm, tentukan jarak antara titik T dan garis PQ! Pembahasan Berdasarkan gambar! Jarak titik T ke garis PQ adalah panjang garis TR. Perhatikan segitiga TAB $\begin{align}TP &= \sqrt{AT^2-AP^2} \\ &= \sqrt{12^2-6^2} \\ &= \sqrt{108} \\ TP &= 6\sqrt{3} \end{align}$ Perhatikan segitiga QAP siku-siku di titik A. $\begin{align}PQ &= \sqrt{AQ^2+AP^2} \\ &= \sqrt{6^2+6^2} \\ PQ &= 6\sqrt{2} \end{align}$ Perhatikan segitiga TQP segitiga sama kaki TQ = TP. $\begin{align}TR &= \sqrt{TP^2-PR^2} \\ &= \sqrt{6\sqrt{3}^2-3\sqrt{2}^2} \\ &= \sqrt{108-18} \\ &= \sqrt{90} \\ TR &= 3\sqrt{10} \end{align}$ Jadi, jarak titik T ke garis PQ adalah $3\sqrt{10}$ cm. C. Soal Latihan Diketahui kubus rusuk-rusuknya 20 cm. Jarak titik E ke garis BD adalah … cm. Diketahui kubus dengan panjang rusuk 8 cm. Jarak titik A ke garis DF adalah … cm. Diketahui kubus dengan panjang rusuk 12 cm. Titik M adalah titik tengah rusuk BC. Jarak titik M ke garis EG adalah … cm. Limas beraturan dengan panjang rusuk alas 12 cm dan panjang rusuk tegak $12\sqrt{2}$ cm. Jarak titik A ke garis TC adalah ... cm. Diketahui balok dengan AB = 24 cm, BC = 8 cm dan CG = 6 cm. Tentukan jarak titik B ke garis AG. Subscribe and Follow Our Channel
jarak titik h ke garis df